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EFL: Designing a Vector Graphics API For User Interfaces

Scaling from the embedded world to the desktop ! 
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● EFL, in short !

● Vector graphics for user interface

● Designing a modern rendering pipeline for vector graphics

● Questions?
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EFL: A Toolkit Created for Enlightenment 17
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Enlightenment Foundation Libraries (EFL)

● Spent a decade writing a modern graphic toolkit

● Licensed under a mix of LGPL and BSD license

● Focus on embedded devices, but scale from the low end to the high end.

● First release on January 2011

● Stable, long term API/ABI 

● In the process of releasing version 1.16

● 3 month release cycle

● Tizen Native UI Framework
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Enlightenment Community

● The Enlightenment community

– 60 uniq contributors per release (10 cores)

– 1000 users that build from source

– 2 distributions based on Enlightenment (Bodhi and Elive)

● The Enlightenment community expected Linux to takeoff in the embedded wo
rld, not on the desktop

● The values shared by this community:

● Customizable
● Scalable

● Fast
● Light
● Feature Rich



7Samsung Open Source Group

State of EFL

● Designed for creating a Windows Manager (WM), now used for any type of 

application

● Has its own scene graph and rendering library

● Optimized to reduce CPU, GPU, memory and battery usage

● Supports international language requirements (LTR/RTL, UTF8)

● Supports all variations of screens and input devices (scale factor)

● Fully Themable (layout of the application included)

● Supports profiles

● Can take up as little as 8MB of space with a minimal set of dependencies

● Has a modular design
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Why We Care About Optimization

● Moore's law doesn't apply to battery life and memory bandwidth

● Most rendering operations are limited directly by memory bandwidth

● Many embedded devices have less available memory than a low end phone

– Refrigerator, oven, dish washer, washing machine, home automation…

● Even a low end phone doesn't have much memory to spare once you run a b
rowser!

● GL context at best consumes 10MB, usually more around 40MB; this is bad 

for multitasking!
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Current State of Optimization

● Application runtime memory use is mostly driven by screen size

● EFL can fit in 8MB on disk (static compilation with minimal dependencies, OS 
included)

● No hard requirement on the GPU

● Enlightenment + Arch Linux combined :

– 48 MB RAM

– 300 Mhz (1024 x 768)

– Yes, for a desktop profile!
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Vector graphics for user interface
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Vector graphics quick definition

Wikipedia :

“Vector graphics are based on vectors (also called paths), which lead
 through locations called control points or nodes. Each of these points
 has a definite position on the x and y axes of the work plane and determines
 the direction of the path; further, each path may be assigned a stroke color,
 shape, thinkness, and fill.”
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Why vector graphics ?

● Ease the work of designer and engineer to define animation.

● No interpolation error if frame rate varies.

● Lighter on storage use as you don't need every image
 → Tradeof as they are heavier on CPU usage.

● Not for SCALING ! Everything will scale !
 → No property to discern between readable element and non readable elem
ent.
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Let's look at some application and toolkit
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Let's look at some application and toolkit
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Observation

● Common pattern

– Same shape

– Same gradient

– Same color

● Interface are consistent !

● When we raster image, we reuse the same image everywhere
→ Let's do the same with vector graphics !
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Designing a modern rendering
 pipeline for vector graphics
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What should we cache ?

● Caching CPU intensive information

● Minimize amount of memory needed to keep that information

● Minimize memory bandwidth needed to replay that information

● Vector graphics are done in 3 stages :

– Computing the spans lines (CPU intensive)

– Filling that spans lines (Depend on operation, but mostly cache bound)

– Compositing the spans lines (Memory bound operation)

● Cache the spans lines and math, not the generated texture
→ Cache the CPU intensive information without increasing the memory use

● Caching texture result has higher cost during animation
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Let's talk a little bit about modern device

● Multi core with different characteristic (big/little)

● Some kind of GPU

● Constrained by memory, because of multi tasking

● Constrained by memory bandwidth

● Constrained by battery

● Everyone expect great and reactive user experience whatever the device

● Everyone want weeks of battery life !
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Evas - Scene Graph

● A basic scene graph rendering ascends from the bottom to the top of the tree

● Possible optimizations

– Reorder GL operations to limit Texture and Shader changes

– Partial updates

– Cutout opaque areas

– Complete drawing operations in another thread

– Efficiently cache costly CPU operations between frames

– Deduplicate objects
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Now what can we do with vector graphics in a scenegraph ?

● Possible optimizations :

– Reorder GL operations to limit Texture and Shader changes

– Partial updates

– Cutout opaque areas

– Complete drawing operations in another thread

– Efficiently cache costly CPU operations between frames

– Deduplicate objects

● Vector graphics will always be less efficient than just image rasterizing
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Rendering Pipeline – Where we started

Historical rendering pipeline for Evas
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Rendering Pipeline – Where we are

Current rendering pipeline for Evas
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Rendering Pipeline – Where we are going

Future rendering pipeline for Evas
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Ector – Retained rendering library

● The idea of retained rendering come from Enesim (http://www.enesim.org)

● Didn't want to reinvent everything, so we have multiple backend :

– Freetype

– Cairo

● Ector is used by Evas for the drawing

http://www.enesim.org/


29Samsung Open Source Group

Ector – Freetype backend

● Freetype provide an API to get spans lines easily

● Freetype provide in fact a source code you can include in your project

● It's fast, tested and support all the primitive we need to generate all shape

● Also we can make it match our retained API well

● We do already have better performance than we expected

● Still missing

– Deduplicating shape

– Asynchronous computation of shape and gradient information

– GL backend
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Ector – API

● Surface object per backend with a renderer factory

● Renderer just draw one primitive into the surface that created them

● Renderer can be moved at no cost (Ease reuse)

● Renderer have 3 functions :

– Prepare

– Render

– Fill

● Renderer :

– Shape

– Gradient Linear

– Gradient Radial
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Ector – Where are we going ?

● Improve testing

● Understand why we have so much difference with Cairo

● Experiment with different GL backend design

– Classic Loop & Blinn Approach

– Use a texture filled with span information to fill

● Vulkan backend once we have some driver to play with

● Replacement of all Evas immediate rendering code by Ector

– Filters

– Text

– Image

– GL
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Evas – Integration with the scene graph

● Evas work with Evas_Object primitive :

– Rectangle

– Image

– Text

● We just added a Vector graphics object that is handle as a transparent object

● Contain a tree of primitives

● Tree's :

– Can be disconnected from the canvas

– Can be duplicated

– Can be interpolated (following w3c SVG specification)
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Evas – What come next ?

● Add SVG file loading/saving support

● Add EET (binary file format for theme) file loading/saving support

● Add more primitive (Likely order) :

– Filter

– Text

– Image
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Edje – Theme integration proposal

● SVG animation and interaction definition are “tricky”

● Most tool generate heavy animation instead of simpler one

● Keep it simple :

– Starting point defined by SVG

– End point defined by another SVG

– Interpolate in between them

● Vector graphics part

– State defined by a SVG

– Program define rules for interpolation
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EFL – Vector graphics cheat sheet

● Vector graphics will always be slower than just image rendering

● Can still be made fast and usable for real time user interface component

● Require to rethink how we do rendering

● Retained rendering is likely to open a lot of possibility in the futur

● EFL introduce 3 new components :

– Ector: Retained rendering library

– Evas_Object_VG: Vector graphics scene graph object

– VECTOR: part in Edje theme
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Questions?

Twitter: @SamsungOSG
Slides: http://www.slideshare.net/SamsungOSG 
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